
NOVEMBER/DECEMBER 2000 75

C O M P U T E R S I M U L A T I O N S

gates on a single integrated circuit, so
you have to partition the gates between
separate circuits. Let’s assume that you
are forced to place exactly n/2 gates each
on two integrated circuits. The connec-
tions between the gates across the parti-
tion are slow, energy consuming, and
heat producing, while the cost associated
with connections inside an integrated
circuit are negligible. So, you want to di-
vide the network of gates such that the
cost function C, the number of connec-
tions cutting across the partition, is min-
imized (see Figure 1). Because a million
computers will be running almost non-
stop for 10 years, removing even one
costly connection would be worthwhile.

Fortunately, this (simplified) problem
can be mapped onto the well-known
graph-bipartitioning problem. In this
problem, the n gates are the vertices of
a graph with edges between two con-
nected gates. Each vertex is a Boolean
variable, with state “0” if placed on the
left integrated circuit and state “1” if
placed on the right integrated circuit.
Although the graph of connections is
fixed, the vertices can be moved so that
we may obtain a good partition. Unfor-
tunately, optimizing the equal partition
is NP-hard; that is, the computations
needed to find the global optimum with
certainty for even the cleverest algo-

rithm grow faster than any power of n.
This computation would become un-
reasonable for about n � 103.

Instead, we can “search” the space of
all feasible (equal) partitions Ω. Because
the configurations S ∈ Ω so far are un-
related, we need to define a “neighbor-
hood” N(S) ⊂ Ω for each S, a way to
proceed from the current configuration
S to some neighboring configuration
S′ ∈ N(S).1 A simple neighborhood N
for this problem is a “1-exchange,”
which consists of all S′ ∈ Ω obtained
from S by changing a 0-vertex to 1 and
a 1-vertex to 0 (to maintain an equal par-
tition). The neighborhood N provides Ω
with a metric such that the cost function
C(S) exhibits local extrema, like a (high-
dimensional) mountain landscape.
Then, moving sequentially “downhill”
to better configurations, we should
reach a local minimum very quickly.
However, in NP-hard optimization
problems, the number of suboptimal
minima of the cost function grows
nearly as fast as the number of configu-
rations, |Ω|, which here grows like

.

Thus, in this approach there is no way
to move the system from the current

minimum to a better one; it’s like try-
ing to find the lowest point in a moun-
tainous landscape at night.

In this case, our “heuristic” (derived
from the Greek word for “find”) pro-
duces merely approximate solutions: lo-
cal minima of dubious quality. Can we do
better? If we had more time, we could
use an algorithm that alternates downhill
moves with a small random change of
the current local-minimum configura-
tion. This change might take the system
over a “mountain range” such that a sub-
sequent descent would provide a new lo-
cal minimum. A sequence of these sto-
chastic updates can only increase our
chances that our search passes through a
better minimum.

A good stochastic search, while in-
herently slow, succeeds by controlling
the right mixture of descending moves
with “hill-climbing” perturbations. A
particularly elegant stochastic opti-
mization heuristic is simulated anneal-
ing.2 To implement simulated anneal-
ing for the graph-bipartitioning
problem, we can adopt the 1-exchange
neighborhood by choosing two ver-
tices at random at each update. If we
accept only 1-exchanges that lower the
cost, the system converges to a (likely
poor) local minimum and no further
improvement is possible for any pair
of vertices that are chosen. In contrast,
simulated annealing allows moves that
raise the cost according to the Me-
tropolis algorithm. In each update, a
1-exchange is accepted with probabil-
ity p = min{1, e−∆/T}, where ∆ = C(S′) −
C(S) is the difference in cost between
the new and the old configuration.

Ω =






n

n n
n

2
2 ~

Editors: Harvey Gould, hgould@physics.clark.edu
Jan Tobochnik, jant@kzoo.edu

EXTREMAL OPTIMIZATION:
HEURISTICS VIA COEVOLUTIONARY AVALANCHES
By Stefan Boettcher

IMAGINE THAT YOU WANT TO DESIGN SOME CIRCUITRY FOR A

COMPUTER. THE LOGICAL FUNCTION YOU HAVE TO IMPLE-

MENT REQUIRES A KNOWN NETWORK OF n INTERRELATED LOGI-

CAL GATES. UNFORTUNATELY, n IS TOO LARGE TO PUT ALL THE

76 COMPUTING IN SCIENCE & ENGINEERING

Controlling the “temperature” T is
crucial for simulated annealing to suc-
ceed: if T is too large, every uphill move
is accepted and no minima are found at
all, while for small T only downhill
moves are accepted and the system
quickly freezes into a local minimum.
Instead, mimicking the annealing proc-
ess designed to harden alloys, T is low-
ered slowly, allowing simulated anneal-
ing to explore the configuration space
landscape widely at high T to reach the
largest “valley.” In turn, this valley may
harbor a correspondingly lower mini-
mum for the system to freeze into at
smaller T. If T is changed slowly, the
Metropolis algorithm ensures thermo-
dynamic equilibrium (which means that
each move is as likely to take place as its
reverse, a state referred to as detailed
balance).

Because equilibrium systems are well
understood, we have an enormous
amount of knowledge to guide simulated
annealing. Theoretically, simulated an-
nealing will always converge to the
global optimum.3 Unfortunately, this
convergence requires vanishingly small
decrements of T; about as many updates
are needed as in an exhaustive search of
Ω. Short of that, it is an art to devise a
temperature schedule that balances
computational efficiency with the qual-
ity of the minima that are found.1 De-
spite its shortcomings, simulated an-
nealing is conceptually elegant and often
highly successful for practical problems
about which little else is known. De-
pending on the structure of the graph, it
may be useful for our graph-bipartition-
ing problem.4,5 (Typically, simulated an-
nealing works well for highly connected
graphs, but can only get within an order

of magnitude of the best-
known minima for many
geometrical graphs.)

But could we improve
our procedure by throwing the equi-
librium requirement overboard? The
behavior of simulated annealing soon
becomes difficult to predict for lack of
any theoretical guidance. Although
most processes in nature are out of
equilibrium, our understanding of these
processes is incomplete. Thus, re-
searchers typically bypass physical con-
siderations entirely and move to a
more abstract conception of a natural
process for inspiration of an optimiza-
tion procedure.

This is clearly the case for genetic al-
gorithms, which mimic evolution by
natural selection.6 The way that ge-
netic material evolves and replicates is
poorly understood in physical terms,
but how genes selectively optimize
themselves is readily transcribed into
an optimization algorithm. Genetic al-
gorithms consist of a collection of bi-
nary-encoded strings (the genotypes)
and a mapping that takes each geno-
type to a configuration (the phenotype)
such as a specific partitioning in the
graph problem. During each step of
the algorithm the population of geno-
types is modified (by mutations and
crossover operators that exchange sec-
tions of the strings representing two
genotypes), and a few genotypes that
lead to the best phenotypes (that is, the
lowest cost function) are selected.
Without the theoretical guidance that
simulated annealing possesses, the val-
ues of the parameters that control the
working of genetic algorithms are cho-
sen mostly by trial and error. However,
with some empirical knowledge, ge-
netic algorithms also prove to be a
powerful optimization procedure with
many successful applications.7

Emergence and self-organized
criticality

What can we learn by focusing on the
physics of nonequilibrium processes?
During the past decade, some physicists
have become interested in systems ex-
hibiting self-organized criticality, in
which complex patterns emerge without
the need to control any parameters.8

For instance, biological evolution has
developed, apparently by chance, effi-
cient networks in which resources rarely
go to waste. But species are coupled in a
global comparative process that persis-
tently washes away the least fit. In this
process, unlikely but highly adapted
structures surface inadvertently. Opti-
mal adaptation emerges naturally, with-
out intervention, from the dynamics
through a selection against the ex-
tremely “bad.” In fact, this process pre-
vents the inflexibility inevitable in a con-
trolled breeding of the “good.”

This coevolutionary process is the
basis of the Bak-Sneppen model, where
the high degree of adaptation of most
species is obtained by the elimination of
badly adapted ones instead of the engi-
neering of better ones.9,10 Species in the
Bak-Sneppen model are sites of a lat-
tice, and each is represented by a value
between 0 and 1, indicating its fitness.
At each update, the smallest value (rep-
resenting the worst-adapted species) is
discarded and replaced with a new value
drawn randomly from a flat distribution
on [0, 1]. Because the change in fitness
of one species impacts the fitness of in-
terrelated species, at each update of the
Bak-Sneppen model, the fitness values
on the sites neighboring the smallest
value are replaced with new random
numbers as well. After a certain num-
ber of updates, the system organizes it-
self into a highly correlated state char-
acteristic of self-organized criticality.11

In this state, almost all species have

C O M P U T E R S I M U L A T I O N S

Figure 1. Schematic of two integrated circuits, each with an equal number
of logical gates (represented by gray boxes). The graph of connections
between gates is fixed, but the gates can be moved onto either integrated
circuit. Find an equal partition of the gates such that there is a minimum of
connections between the integrated circuits. How would you verify that a
configuration is a global optimum?

NOVEMBER/DECEMBER 2000 77

reached a fitness above a certain thresh-
old (see Figure 2). But chain reactions,
called avalanches, produce large, non-
equilibrium fluctuations in the config-
uration of fitness values. The result
is that any possible configuration is
accessible.

Extremal optimization
The extremal dynamics of the Bak-

Sneppen model can be converted into
an optimization algorithm called ex-
tremal optimization.5 Attractive features
of the model include the following:

• It is straightforward to relate the
sum of all fitnesses to the cost func-
tion of the system.

• In the self-organized critical state to
which the system inevitably evolves,
almost all species have a much better
than random fitness (see Figure 2).

• Most species preserve a good fitness
for long times unless they are con-
nected to poorly adapted species,
providing the system with a long
memory.12

• The system retains a potential for
large, hill-climbing fluctuations at
any stage.

• The model accomplishes these fea-
tures without any control parameters.

To be precise, we define S = (x1, …,
xn) ∈ Ω to be a configuration of the n
variables xi in an optimization problem.
For instance, in the graph-bipartition-
ing problem the variables xi are the
vertices, which can take on the values 0
or 1; a configuration S is one possible
arrangement of n/2 0’s and n/2 1’s. The
cost function C(S) simply counts the
number of bad edges that connect a 0
with a 1 in S. Finally, we define a
neighborhood N(S) that maps S →

S′ ∈ N(S) ⊂ Ω to facilitate a local
search, like the 1-exchange for the
graph-bipartitioning problem.

Extremal optimization performs a
search through sequential changes on a
single configuration S ∈ Ω . The cost
C(S) is assumed to consist of the individ-
ual cost contributions λi for each variable
xi, which correspond to the fitness values
in the Bak-Sneppen model. Typically,
the fitness λi of variable xi depends on its
state in relation to other variables to
which xi is connected. Ideally, it is possi-
ble to write the cost function as

.
(1)

For example, in the graph-biparti-
tioning problem, Equation 1 is satisfied
if we attribute to each vertex xi a local
cost λi = bi/2, where bi is the number of
bad edges of xi, whose cost is equally
shared with the vertices on the other
end of those edges.

For minimization problems, extremal
optimization proceeds as follows:

1. Initialize a configuration S at will
and set Sbest = S.

2. For the current configuration S,
a. evaluate λi for each variable xi;
b. find j with λj ≥ λi for all i; that is,

xj has the worst fitness;
c. choose a random S′∈ N(S) such

that xj must change;
d. if C(S′) < C(Sbest), store Sbest = S′;
e. accept S := S′ unconditionally.

3. Repeat at step 2 as long as desired.
4. Return Sbest and C(Sbest).

A typical run of this implementation
of extremal optimization for the graph-
bipartitioning problem on an n = 500
random graph is shown in Figure 3a.

The most apparent distinction be-
tween extremal optimization and other
methods is the need to define local cost
contributions λi for each variable, instead
of merely a global cost. Extremal opti-
mization’s capability appears to derive
from its ability to access this local infor-
mation directly. Extremal optimization’s
ranking of fitnesses required for step 2b
superficially appears like the ranking of
possible moves in some versions of sim-
ulated annealing and other heuristics.1
There, moves are evaluated by their an-
ticipated outcome, while extremal opti-
mization’s fitnesses reflect the current
configuration S without biasing the out-

C S i
i

n

() =
=
∑λ

1

Sites

F
itn

es
s

1.0

0.8

0.6

0.4

0.2

0.0

0 50 100 150 200

Figure 2. Snapshot during the evolution
of the Bak-Sneppen model, showing the
fitnesses of a 200-species system. Almost
all species have developed fitnesses
above a self-organized threshold (the
horizontal line), while a small number
of currently active species have fitnesses
below.

78 COMPUTING IN SCIENCE & ENGINEERING

come. As a comparison of Figures 3a and
3b demonstrates, a sequence of these
moves allows for much larger than equi-
librium fluctuations in C(S).

Although similarly motivated, genetic
algorithms6,7 and extremal-optimization
algorithms have hardly anything in
common. Genetic algorithms mimic

evolution on the level of genes, and keep
track of entire gene pools of configura-
tions from which to select and breed an
improved generation of solutions. In
comparison, extremal optimization,
based on evolutionary competition at
the phenomenological level of species,
operates only on a single configuration,

with improvements achieved merely by
the elimination of bad fitness values. Ex-
tremal optimization and simulated an-
nealing perform a local search, but in
genetic algorithms crossover operators
perform global exchanges.

Simple extremal-optimization
application to graph partitioning

Following the example of David S.
Johnson and his colleagues4 (see Figure
9 in the cited text), Allon Percus and I
tested early implementations of extremal
optimization5 in a 1,000-run sample on
their n = 500 random graph G500. This
version is based on a 1-exchange be-
tween the worst vertex (step 2b) and one
randomly chosen vertex of the opposite
state (step 2c). We first implemented
Johnson’s simulated-annealing algo-
rithm4 on the same data structure used
by our extremal-optimization program
(see Figure 4a). Then, we determined
the frequency of solutions found by ex-
tremal optimization (see Figure 4b). We
have used runtimes for extremal opti-
mization that are about three times
longer than the time it took for simu-
lated annealing to freeze, because ex-
tremal optimization still yielded signifi-
cant gains. We checked that neither the
best of three runs of simulated annealing
nor a three-times-longer temperature
schedule improved the simulated-
annealing results significantly. Although
the basic, parameter-free version of ex-
tremal optimization considered so far is
already competitive, the best results are
obtained by τ-extremal optimization (see
Figure 4c), which is discussed below.

The τ-extremal-optimization
implementation

The τ-extremal-optimization imple-
mentation is a modification of extremal
optimization that improves results and
avoids dead ends that occur in some
implementations at the expense of in-

C O M P U T E R S I M U L A T I O N S

0 50 100

(Number of updates)/n

200

300

400

500

 C
os

t

0 50 100 150 200

(Number of updates)/n

(a)

(b)

200

300

400

500

 C
os

t

Figure 3. Evolution of the cost function C(S) during a typical run of (a) extremal
optimization and (b) simulated annealing, for the n = 500 vertices random graph
G500.

4 The lowest cost ever found for G500 is 206 (see Figure 4). In contrast to
simulated annealing, which has large fluctuations in early stages of the run and
then converges much later, extremal optimization quickly approaches a stage
where broadly distributed fluctuations allow it to scale barriers and probe many
local minima.

NOVEMBER/DECEMBER 2000 79

troducing a single parameter.5 In gen-
eral, the implementation of τ-extremal
optimization proceeds as follows. Rank
all the variables xi according to their
fitness λi; that is, find a permutation Π
of the labels i such that

λΠ(1) ≥ λΠ(2) ≥ … ≥ λΠ(n). (2)

The worst variable xj (see step 2b) is of
rank 1, j = Π(1), and the best variable is
of rank n. Consider a probability dis-
tribution over the ranks k,

Pk ∝ k−τ, 1 ≤ k ≤ n (3)

for a fixed value of the parameter τ. At
each update, for each independent
variable x to be moved, select distinct
ranks k1, k2, … according to Pk. Then,
execute step 2c such that all xi1, xi2, …
with i1 = Π(k1), i2 = Π(k2), … change.
For example, in the bipartitioning
problem, we choose both variables in
the 1-exchange according to Pk, instead
of the worst and a random one. Al-
though the worst variable of rank k = 1
will be chosen most often, sometimes
(much) higher ranks will be updated
instead. In fact, the choice of a power-
law distribution for Pk (instead of, say,
an exponential distribution with a cut-
off scale excluding high ranks) ensures
that no rank gets excluded from further
evolution while maintaining a bias
against variables with bad fitness.

Clearly, for τ = 0, τ-extremal opti-
mization is exactly a random walk
through Ω. Conversely, for τ → ∞, the

200 210 220 230
 Cost

0

50

100

150

Fr
eq

ue
nc

y

200 210 220 230
 Cost

0

50

100

150

Fr
eq

ue
nc

y

200 210 220 230
 Cost

0

50

100

150

200

Fr
eq

ue
nc

y

(a)

(b)

(c)

Figure 4. Trials of 1,000 runs on G500

(see Figure 3) using (a) simulated
annealing, (b) extremal optimization,
and (c) extremal optimization with
τ = 1.5. The histograms give the
frequency with which a particular cost
has been obtained during the trial runs.
The best cost ever found for this graph
is 206.4 This result appeared only once
over the 1,000 simulated-annealing runs
in Figure 4a. While the best result for
extremal optimization in Figure 4b was
207, τ-extremal optimization in Figure 4c
obtained 80 times a result of 206.

80 COMPUTING IN SCIENCE & ENGINEERING

C O M P U T E R S I M U L A T I O N S

Table 1. Best costs (and allowed runtime in seconds) for a testbed of large graphs. The value of n is given for each graph.
Genetic algorithms results are the best reported14 (using a 300-MHz CPU). The τ-extremal-optimization results are from our runs
(200 MHz). Comparison data for three of the large graphs are due to spectral heuristics by Bruce Hendrickson and Robert Leland
(50 MHz).15 METIS is a partitioning program based on hierarchical reduction instead of local search,16 and yields
extremely fast, deterministic results (200 MHz).

Graph Genetic algorithm τ-extremal optimization Spectral heuristics15 METIS
Name n Cost Time (sec.) Cost Time (sec.) Cost Time (sec.) Cost Time (sec.)
Hammond 4,720 90 1 90 42 97 8 92 0
Barth 15,606 139 44 139 64 146 28 151 0.5
Brack2 62,632 731 255 731 12 — — 758 4
Ocean 143,437 464 1,200 464 200 499 38 478 6

Suggestions for further study

1. A simple model of a glass consists of a d-dimensional
hypercubic lattice with a spin variable σi ∈ {−1, 1}
placed on each site i, 1 ≤ i ≤ n = Ld.1 Every spin i is con-
nected to each of its nearest neighbors j via a fixed-
bond variable Ji,j drawn randomly from {−1, 1}. Spins
may be coupled to an arbitrary external field hi. The
cost function to be minimized is the Hamiltonian

.

Arranging the spins into an optimal, lowest-energy con-
figuration is hard because of frustration.1 In fact, for
d > 2 the problem is NP-hard.2

A. Find a definition of λ i for each spin variable such
that Equation 1 in the main article is satisfied.

B. Define a simple neighborhood N for this prob-
lem. Would your N lead to a stochastic or a deter-
ministic sequence of update? Do you expect that
your basic extremal-optimization implementa-
tion would be very successful?

C. Implement τ-extremal optimization for this spin
glass in d = 3 for hi = 0. Use single spin flaps as your
neighborhood N, and sort your fitnesses in the
hash table from the next exercise. A single run
should have at least t > n updates (why?); but t ∝
n4 appears to be necessary,3 so keep n small
(≤1,000). Try to find a good value for τ. Does it de-
pend on n or t? For comparison, the cost function
has been found with genetic algorithms to scale
like C(Sbest) � −1.786n for n = 33 … 143.3

2. The τ-extremal-optimization algorithm described in
the main article requires a perfect ordering (see Equa-
tion 2 in the main article) of the λ i (1 ≤ i ≤ n), which
would produce a factor of n ln n for the computa-
tional time. In practice, it is sufficient to order the λ i

somewhat. (Most likely many λ i will be degenerate.)

A. Devise a τ-extremal-optimization implementation
in which the λ i are sorted on a binary tree only
(time factor ln n), where the λ i are picked such
that Equation 3 in the main article is roughly ap-
proximated. (For Allon Percus’s and my humble
attempt, see “Nature’s Way of Optimizing.”4)

B. For some problems even the use of a hash table
with a constant time factor may be useful. (Hash
tables are explained in The Practice of Program-
ming.5) For the spin glass problem in Problem 1,
exploit the degeneracies between individual fit-
nesses to give a sorting algorithm using a hash
table that leaves the λ i perfectly ordered.

References
1. M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Be-

yond, World Scientific, Singapore, 1987.

2. F. Barahona, “On the Computational Complexity of Ising Spin

Glass Models,” J. Physics A: Mathematical and General, Vol. 15, No.

10, Oct. 1982, pp. 3241–3253.

3. K.F. Pal, “The Ground State Energy of the Edwards-Anderson Ising

Spin Glass with a Hybrid Genetic Algorithm,” Physica A, Vol. 223,

1996, pp. 283–292.

4. S. Boettcher and A.G. Percus, “Nature’s Way of Optimizing,” Artifi-

cial Intelligence, Vol. 119, Nos. 1–2, May 2000, pp. 275–286.

5. B.W. Kernighan and R. Pike, The Practice of Programming, Addison-

Wesley, Reading, Mass., 1999.

C S H

J h

n

i j i j i i
iji

() = ()
= − −∑∑∑

σ σ

σ σ σ

1

1
2

, ,

,

K

NOVEMBER/DECEMBER 2000 81

process approaches a deterministic lo-
cal search, only swapping the lowest-
ranked variables, and is bound to
reach a dead end. Indeed, tests of both
τ = 0 and τ = ∞ yield terrible results. In
the graph-bipartitioning problem,
τ-extremal optimization obtained
its best solutions for τ in the range of
1.4 to 1.6. Clearly, we have “tuned”
away from the philosophy of the Bak-
Sneppen model by inserting a single
parameter for the sake of better re-
sults. To be successful, every heuristic
has to allow for some adjustments to a
particular problem.

Table 1 summarizes our τ-extremal-
optimization results for some well-stud-
ied instances of graphs with large n, us-
ing τ = 1.4 and the best of 10 runs. We
obtained initial configurations from a
simple clustering algorithm.5 Then, we
chose the number of updates t such that
the results did not change much beyond
t. The choice of t varied with the partic-
ularities of each graph, from t = 2n to
t = 200n, and the reported runtimes are
of course influenced by the value of t. It
is worth noting that the performance of
extremal optimization varies. For in-
stance, half of the runs on the graph
known as Brack2 returned costs near
731, but the other half returned costs
above 2,000. This variation may be a
product of an unusual structure in this
particular graph. In a systematic study
of extremal optimization in comparison
with simulated annealing by averaging
over many graphs of increasing size, I
found that extremal optimization finds
near-optimal results for graphs of low
connectivity and that the results of sim-
ulated annealing become worse with in-
creasing graph size.13

Other extremal-optimization
implementations

To demonstrate the generality of ex-
tremal optimization, Allon Percus and
I are currently experimenting with its
implementation for other NP-hard op-
timization problems such as graph col-
oring (K-COL), satisfiability (K-SAT),
and spin glass Hamiltonians. In K-
COL, given K different colors to label
the vertices of a graph, we need to find
a coloring that minimizes the number
of edges connecting vertices of identi-
cal color. A definition of fitness is as
obvious as it was for the graph-biparti-
tioning problem: for each vertex xi sim-
ply count the number bi of equally col-
ored vertices connected to it; setting
λi = bi /2 again satisfies Equation 1. The
lack of a global constraint as for the
graph-bipartitioning problem allows us
to define a neighborhood by changing
the state of only one, the worst, vari-
able. However, this definition results in
a deterministic search that quickly
reaches a dead end. A τ-extremal-opti-
mization implementation picking a sin-
gle variable with τ � 2.7 seems to work
best for the graphs we have studied.

With this algorithm we have studied
the “phase transition” of K-COL,
“where the really hard instances are.”17

This transition arises as a function of
the average vertex degree α for certain
types of graphs. (The degree of a ver-
tex is the number of edges emanating

from it and may vary between vertices
of a graph.) If α is small, almost all ver-
tices have fewer than K neighbors, col-
oring becomes trivial, and the optimal
solution has zero cost for almost all
graph instances. But around a critical
value αcrit(K), the cost becomes posi-
tive, with an ever sharper transition for
n → ∞. If we average the best solutions
that extremal optimization finds over
many instances of random graphs, we
can show that αcrit(3) � 4.72 (see Fig-
ure 5). The relationship between phase
transitions, which occur in many NP-
hard problems, and computational
complexity is evolving into one of the
hot topics in computer science.17–20 In
this interesting regime extremal opti-
mization’s large fluctuations appear to
have the edge over simulated anneal-
ing’s equilibrium requirements.13

Because extremal optimization is
fairly new, there are many unanswered
questions. It will not be difficult for
the interested reader to think of re-
search projects that, for example,
compare extremal optimization to
other methods. Clearly, like any other
optimization method, extremal opti-
mization will not be competitive for
some problems (unfortunately, the
traveling salesman problem seems to
be one example5). But it can’t hurt to
have more alternative methods to
choose from for tackling hard opti-
mization problems.

0

1

2

3

4

5

6

C
os

t f
un

ct
io

n

n = 32

n = 64

n = 128

n = 256

n = 512

4.0 4.5 5.0 5.5 6.0
Average vertex degree α

3.5

Figure 5. Plot of the average optimal
cost as a function of the average vertex
degree α for 3-COL of random graphs.
Results were found by τ-extremal
optimization for 2,300, 650, 330, 150,
and 100 instances for graph sizes n = 32,
64, 128, 256, and 512 vertices, respec-
tively, at each value of α. The critical
point (where the costs intersect) is at
αcrit(3) � 4.72.

Acknowledgments
I thank Allon Percus, with whom I de-
veloped extremal optimization, and
Emory University’s Research Commit-
tee for their support.

References
1. C.R. Reeves, ed., Modern Heuristic Techniques

for Combinatorial Problems, John Wiley &
Sons, New York, 1993.

2. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi,
“Optimization by Simulated Annealing,” Sci-
ence, Vol. 220, No. 4,598, May 1983, pp.
671–680.

3. S. Geman and D. Geman, “Stochastic Relax-
ation, Gibbs Distributions, and the Bayesian
Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 6, No.
6, Nov. 1984, pp. 721–741.

4. D.S. Johnson et al., “Optimization by Simu-
lated Annealing: An Experimental Evaluation;
Part 1, Graph Partitioning,” Operations Re-
search, Vol. 37, No. 6, Nov. 1989, pp.
865–892.

5. S. Boettcher and A.G. Percus, “Nature’s Way
of Optimizing,” Artificial Intelligence, Vol.
119, Nos. 1–2, May 2000, pp. 275–286.

6. J. Holland, Adaptation in Natural and Artificial
Systems, Univ. of Michigan Press, Ann Arbor,
Mich., 1975.

7. D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, Mass., 1989.

8. P. Bak, How Nature Works, Springer-Verlag,
New York, 1996.

9. P. Bak and K. Sneppen, “Punctuated Equilib-
rium and Criticality in a Simple Model of Evo-
lution,” Physical Rev. Letters, Vol. 71, No. 24,
13 Dec. 1993, pp. 4083–4086.

10. M. Newman, “Simple Models of Evolution
and Extinction,” Computing in Science & Eng.,
Vol. 2, No. 1, Jan./Feb. 2000, pp. 80–86.

11. P. Bak, C. Tang, and K. Wiesenfeld, “Self-
Organized Criticality: An Explanation of the
1/f Noise,” Physical Rev. Letters, Vol. 59, No.
4, 27 July 1987, pp. 381–384.

12. S. Boettcher and M. Paczuski, “Ultrametricity
and Memory in a Solvable Model of Self-
Organized Criticality,” Physical Rev. E, Vol.
54, No. 2, Aug. 1996, pp. 1082–1095.

13. S. Boettcher, “Extremal Optimization and
Graph Partitioning at the Percolation Thresh-
old,” J. Physics A: Mathematical and General,
Vol. 32, No. 28, 16 July 1999, pp. 5201–5211.

14. P. Merz and B. Freisleben, Memetic Algorithms
and The Fitness Landscape of the Graph Bi-Par-

titioning Problem, Lecture Notes in Computer
Science, No. 1,498, Springer-Verlag, Heidel-
berg, Germany, 1998, pp. 765–774.

15. B.A. Hendrickson and R. Leland, “A Multilevel
Algorithm for Partitioning Graphs,” Proc. Su-
percomputing ’95 (CD-ROM), IEEE Computer
Soc. Press, Los Alamitos, Calif., 1995.

16. G. Karypis and V. Kumar, “METIS: Family of
Multilevel Partitioning Algorithms,” www-
users.cs.umn.edu/~karypis/metis/main.shtml.

17. P. Cheeseman, B. Kanefsky, and W.M. Taylor,
“Where the Really Hard Problems Are,” Proc.
1991 Int’l Joint Conf. Artificial Intelligence (IJCAI
’91), Morgan Kaufmann, San Francisco,
1991, pp. 331–337.

18. Special issue on Frontiers in Problem Solving:
Phase Transitions and Complexity, Artificial
Intelligence, Vol. 81, Nos. 1–2, Mar. 1996.

19. R. Monasson et al., “Determining Computa-
tional Complexity from Characteristic ‘Phase
Transitions,’” Nature, Vol. 400, No. 6,740, 8
July, 1999, pp. 133–137.

20. J. Machta and R. Greenlaw, “The Computa-
tional Complexity of Generating Random
Fractals,” J. Statistical Physics, Vol. 82, Nos.
5–6, Mar. 1996, pp. 1299–1326.

Stefan Boettcher is a member of the Department

of Physics at Emory

University. His research

interests include self-

organized criticality,

optimization problems,

and quantum field the-

ory. He received his

PhD from Washington

University in St. Louis for research on perturba-

tive methods in quantum field theory. Contact

him at the Dept. of Physics, Emory Univ., Atlanta,

GA 30322; stb@physics.emory.edu; www.

physics.emory.edu/faculty/boettcher.

82

C O M P U T E R S I M U L A T I O N S

How to
Reach CiSE

Writers

For detailed information on sub-
mitting articles, write to
cise@computer.org or visit
computer.org/cise/edguide.htm.

Letters to the Editors

Send letters to

Jenny Ferrero, Contact Editor
jferrero@computer.org

Please provide an e-mail address or
daytime phone number with your
letter.

On the Web

Access computer.org/cise or
ojps.aip.org/cise for information
about CiSE.

Subscription Change of Address
(IEEE/CS)

Send change-of-address requests for
magazine subscriptions to address.
change@ieee.org. Be sure to spec-
ify CiSE.

Subscription Change of Address
(AIP)

Send general subscription and re-
fund inquiries to subs@aip.org.

Subscribe

Visit
ojps.aip.org/cise/subscrib.html or
computer.org/subscribe.

Missing or Damaged Copies

If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

Reprints of Articles

For price information or to order
reprints, send e-mail to cise@
computer.org or fax +1 714 821
4010.

Reprint Permission

To obtain permission to reprint an
article, contact William Hagen,
IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.

